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ABSTRACT

A simple index of extreme surface (2m) monthly temperature was analyzed over the conterminous United

States for 13 models from the Coupled Model Intercomparison Project phase 5 (CMIP5) hindcast (1981–

2010) and prediction (2006–35) datasets as well as the U.S. climate division dataset, version 2 (nClimDiv), as

observations for 1981–2010.Results are analyzed for regions defined in the recentThirdU.S. National Climate

Assessment. There is good agreement between models and observations for all regions for the annual warm

and cold indices except for the warm index in the Northwest. For seasonal values of the temperature index,

model simulations generally agree with the sign of the observed seasonal trends in all regions except for the

Northwest and a few seasons in the ‘‘warming hole’’ areas of the central and southeasternUnited States.Most

individual ensemble member simulations agree with the sign of the observed trend. However, in all regions

and seasons, some simulations, in the range of 10%–40% of all ensemble members, show opposite signs,

indicating that even overall skillful projections can have substantial uncertainty. These results indicate that

there is potential skill in use of GCMs to provide projections of hot and cold extremes on the 30-yr time scale.

However, it is important to note that natural variability is comparable to the forced signal on this time scale

and thus introduces uncertainty. Analysis of the future simulations (2006–35) indicates that warm extremes

increase rapidly while cold extremes become substantially more rare.

1. Introduction

Numerous studies of U.S. mean and extreme tem-

perature trends have been done. An overall decrease in

the number of cold days and nights and the increase in

the number of warm days and nights have been observed

(IPCC 2012). In a study using the U.S. Historical Cli-

matology Network (USHCN), Lee et al. (2014) con-

cluded that extreme temperatures (both daily maximum

and minimum) are increasing and specifically that high

minimum temperatures are increasing more than max-

imum temperatures. Karl et al. (2012) and Peterson et al.

(2008) also find similar results over the United States

and North America. DeGaetano and Allen (2002) and

Meehl et al. (2009) found that not only are the extreme

high minimum and maximum temperature trends in-

creasing but also that the number of cold extremes are

decreasing. Peterson et al. (2013) also concluded that

over the past several decades, heat waves are increasing,

and cold waves are decreasing.

Extreme temperature events can have a multitude of

adverse effects, both direct and indirect. One obvious

direct effect is on heat-related deaths and potential in-

creases in these type of deaths (Maloney and Forbes

2011). One indirect effect is on drought. Severe droughts

can have devastating consequences on agriculture, in-

cluding crops and livestock as well as water storage and

supplies. Increasing trends in extreme temperatures can

exacerbate drought conditions by increasing evapora-

tion rates and the rate of depletion of soil moisture and

thereby decreasing the supply of atmospheric water

vapor, especially in the plains states and Texas

(Hoerling et al. 2013; Namias 1983). Increased rates of

soil moisture loss associated with extreme temperatures

can also increase risks for wildfire (Park Williams et al.

2013, 2014).

Extreme temperatures can also significantly alter

forest ecosystem carbon dioxide exchange, that is,

transforming a forest from a net carbon sink into a net

carbon source (IPCC 2012). Extreme warm years can

lead to sustained decrease in carbon dioxide uptake by

ecosystems (Arnone et al. 2008). Changes in extremeCorresponding author e-mail: Steve T. Stegall, sstegall@cicsnc.org
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temperatures can also have an impact on surface ozone

levels (Sanderson et al. 2003).

As global mean temperatures rise, temperatures

during extreme events are certain to be higher in themid

to late twenty-first century (Meehl and Tebaldi 2004;

Kunkel et al. 2010). On the shorter 10–30-yr time frame,

climate model simulations indicate that uncertainties in

projections of the future arise principally from internal

climate variability and model-to-model differences

(Hawkins and Sutton 2009). Temperatures in the con-

tinental United States increased by about 0.78C over the

30-yr period of 1981–2010 (Walsh et al. 2014), and the

Coupled Model Intercomparison Project phase 5

(CMIP5) generation of climate models simulates this

increase well (Sun et al. 2015) with a considerable model

spread. This suggests that there could be sufficient skill

in projecting extreme temperature conditions to provide

actionable information to decision-makers.

The U.S. NationalWeather Service’s seasonal climate

outlooks identify areas where there are believed to be

some skill in anticipating temperature and precipitation

out to a year in advance. The likelihood of abnormal

conditions is typically indicated as 5%–20% above

nominal climatological values. Although this level of

skill is not high in comparison with the skill achieved in

forecasting weather out to a few days in the future, these

outlooks have been used for planning in many sectors

(Rajagopalan et al. 2002). Our goal is to identify aspects

of near-term (10 to 30 yr) climate where similar skill

levels can be achieved. There is relatively high confi-

dence in continued warming, and this provides a robust

foundation for skillful outlooks.

This study analyzed the CMIP5 hindcast and pre-

diction ensembles (Taylor et al. 2012). Of specific in-

terest were the 30-yr hindcast simulations, initialized

with conditions beginning in 1980, leading to a simula-

tion period of 1981–2010. The initial climate state may

exert some influence in the early part of the period, but

anthropogenic influence will surely be more important

in the latter part and provide the basis for skillful

forecasts. The prediction simulation of interest is the

2006–35 time period. The 1981–2010 hindcast can be

compared with observations.

Meehl et al. (2014) provided a thorough review of

progress and potential of decadal-scale predictions based

on findings from analyses of the CMIP5 hindcast simu-

lations. They indicate spatially variable skill of surface air

temperature in the 6–9-yr time frame with high skill over

theNorthAtlantic andwestern Pacific andmoderate skill

over North America. For North Atlantic upper-ocean

temperatures, the skill derived from initial conditions is

dominant before year 8, after which long-term anthro-

pogenic forcing becomes the primary source.

The study here will present analysis of a simple ex-

treme temperature index for 1981–2035, which will in-

clude observations, CMIP5 hindcast data, and CMIP5

prediction data. This paper is organized with a de-

scription of the datasets used in this study followed by a

description of the methodology used to calculate the

extreme temperature index. Then results are presented

followed with a discussion and conclusions.

2. Methods and datasets

The CMIP5 includes a number of different experi-

ments, including ones to better understand feedbacks

associated with the carbon cycle and clouds, to explore

climate predictability on decadal time scales, and to de-

termine reasons why similarly forced models produce a

wide range of responses. For our study, we use the de-

cadal hindcasts and prediction simulations, which include

model integrations for 10–30-yr intervals. There are three

30-yr simulations: 1960–90, 1980–2010, and 2005–35. Of

most relevance to our study are the 1980–2010 hindcast

and 2005–35 prediction simulations. The 1980–2010 pe-

riod is characterized by rapidly rising greenhouse gas

concentrations and global average temperatures. The

hindcast–prediction experiment utilizes atmosphere–

ocean global climate models (AOGCMs) that are

initialized by observed conditions in 1980/2005 and

include observed and projected time-varying concen-

trations of various atmospheric constituents, including

greenhouse gases and volcanic eruptions (Taylor et al.

2012). These are fully coupled simulations. As such,

they will not in general capture the exact timing of

historical occurrences, such as specific El Niño–Southern
Oscillation (ENSO) events. The model simulation data

used here are monthly surface temperature from 1981 to

2010 and 2006 to 2035. Table 1 is a list of the 13 models

selected for this study. The number of ensemblemembers

for each selected model is also included in Table 1. For

the 1981–2010 hindcast, all 13 models are used; however,

for the 2006–35 prediction, only 10 of the 13 are available

for use. The excludedmodels are the CCSM4, FGOALS-

g2, and EC-EARTHmodels. The 13 (10) CMIP5 models

selected for this study are based on those models that

output the hindcast (prediction) data.

TheU.S. climate division dataset, version 2 (nClimDiv;

http://www.ncdc.noaa.gov/monitoring-references/maps/

us-climate-divisions.php) is used as the observational

surface temperature data. This dataset covers the con-

terminous Unites States for the period 1895–present at a

monthly resolution. The underlying data used to com-

pute climate division values are a gridded product on

a nominal 5-km latitude–longitude grid. The gridded

data are derived from a network of 10 325 stations. This
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dataset incorporates a number of improvements from

version 1: (i) inclusion of additional station networks

with improved quality assurance and temperature bias

adjustments; (ii) addition of maximum and minimum

temperatures to the climatic elements in the data; and

(iii) the application of a new computational approach,

which employs climatologically aided interpolation to

address topography and network variability (Vose et al.

2014). The aggregation of the observations from the

5-km grid to themuch coarser GCM grid is not expected

to affect the results because there is considerable spatial

coherence in the recent observed temperature trends, as

shown by Walsh et al. (2014).

To consistently and directly compare extreme tem-

perature metrics, the CMIP5 model data and the ob-

servational data are interpolated onto a common 1.58 3
1.58 grid. An extreme temperature index is defined

based on standardized temperature anomalies (STAs).

At each grid point, anomalies are calculated by sub-

tracting the 1981–2010 long-term gridpoint monthly

mean and then standardized by dividing by the gridpoint

monthly standard deviation (s). The mean and standard

deviation values for 1981–2010 are applied to the 2006–

35 simulation to calculate STA values. Extreme positive

anomalies are defined as STA . 11.5 and extreme

negative anomalies are defined as STA,21.5. National

values of the positive and negative extreme temperature

indices are derived by counting the number of grid

points over the United States for each month of each

year with extreme values of the STA. The monthly

values were then summed to seasonal and annual values.

A regional analysis was also performed, and the regional

values of the indices consisted of counts of extreme

values of the indices for each of six climate regions

(Fig. 1). The definitions of regions are the same as those

used in the recent Third National Climate Assessment

(Melillo et al. 2014). The choice of 61.5 as the STA

threshold definition of extremes is somewhat arbitrary and

represents a compromise between sufficient events for ro-

bust statistical analysis and events that are impacts relevant.

Using a 62.0 STA yielded too few results, and 61.0 STA

was determined to not be extreme enough for this study.

3. Results

a. Annual extremes index

Figure 2 shows time series of annual counts (expressed

as a percentage of the total number of grids) of the

number of positive (warm) extreme temperature events

for the 1981–2035 time for each region. The three curves

are the hindcast (1981–2010, blue), prediction (2006–35,

red), and observed (1981–2012, black). The dashed

black line is the observed linear trend for 1981–2010 for

direct comparison with the hindcast (1981–2010) trends

discussed later in the paper. Each of the regions shows

increasing trends for both the observations and the

model mean (both the 1981–2010 and the 2006–35) with

the exception of the Northwest (NW) region. For the

NW, the observed trend is downward, while the model

mean trend (1981–2010 and 2006–35) is upward. How-

ever, the 2006–35 model simulations indicate a rather

sharp increasing trend in warm extremes. The Northeast

(NE) region shows almost identical trends for the ob-

servations and the model mean. For the Southeast (SE),

Midwest (MW), Great Plains (GP), and Southwest

(SW), the trend magnitudes are somewhat different

between models and observations. The 1981–2012 ob-

served trend (not shown) and the 1981–2010 model

mean show better agreement than the 1981–2010 ob-

served trends in theMWandGP because of the extreme

temperatures in 2012. The differences in the observed

trends of 1981–2010 and 1981–2012 (especially in theGP

and MW) show a sensitivity of the linear trend to in-

terannual variability. To illustrate this sensitivity for the

FIG. 1. Six climate regions for the United States used in this study

(these regions are defined in the Third National Climate Assessment;

Melillo et al. 2014). The region labels are defined in section 3a.

TABLE 1. List of the 13 models used from the CMIP5 hindcast

data and the number of ensemble members for each model. The

expansions for these model names can be found at http://www.

ametsoc.org/pubsacronymlist.

CMIP5 models No. of ensemble members

BCC_CSM1.1 4

CanCM4 18

CCSM4 9

CMCC-CM 3

CNRM-CM5 9

EC-EARTH 1

FGOALS-g2 3

HadCM3 9

IPSL-CM5A-LR 6

MIROC4h 3

MIROC5 6

MPI-ESM-LR 3

MRI-CGCM3 3
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FIG. 2. Time series and trends (1981–2010) of the positive (warm) temperature extremes index for observations

and themodelmean forNE, SE,MW,GP,NW, and SW.The black lines are the observation data from 1981 to 2012.

The dashed black lines are the linear trend from 1981 to 2010 for direct comparison with the CMIP5 hindcast data.

The blue lines are themodelmean from 1981 to 2010CMIP5 hindcast data, and the red lines are the 2006–35CMIP5

predictive data.
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NW, the years of 1986–88 and 1992 are set to missing

since these are the largest values for the time period ex-

cept 2003. The resulting linear trends without these years

yield a slight increase in the observed trends. The mag-

nitude is still smaller than the 1981–2010 model mean;

however, the model mean and the observed trends now

have the same sign, that is, increasing warm extremes.

The sensitivity of the trends to ENSO was investigated

by alternately removing events occurring during the

warm and cold phases and then recalculating the regional

trends (noted as T-EN and T-LN for trends with El Niño
and La Niña events removed, respectively). Warm phase

events were defined as those occurring during months

when the 3-month running average (centered on the

month) of the oceanicNiño index (ONI)met the criterion

ONI . 11.0 (http://www.cpc.ncep.noaa.gov/products/

analysis_monitoring/ensostuff/ensoyears.shtml). Cold

phase events were defined as those occurring in months

meeting the criterionONI,21.0. The number of warm

phase months is 23, 18, and 5 in the decades of 1981–90,

1991–2000, and 2001–10, respectively. The number of

cold phase months is more uniformly distributed at 11,

19, and 11 in 1981–90, 1991–2000, and 2001–10, re-

spectively. The removal of La Niña events results in an

increase (more positive) in the upward trend in warm

event extremes and a decrease (less negative) in the

downward trend in cold extremes. There is no system-

atic change in trends for the removal of El Niño events.

The magnitude of the change in trends is small for both

the T-EN and T-LN sets of trends, generally about 0.1%

of the total number of grids per decade or smaller, rel-

ative to the base trends, which are 0.3% per decade or

higher in most cases. There are no cases where the sign

of the trend is changed.

As expected, the observations show much more in-

terannual variability than the model mean (Fig. 2) be-

cause of the averaging of the 77 ensemble members

(1981–2010 and 64 ensemble members for 2006–35) in

calculating the model mean, which will dampen the var-

iability since there is no reason that occurrences of ex-

tremes in the models will be coincident in time among

models. It is very evident that the two hindcast/prediction

datasets for the overlapping years 2006–10 yield different

results. For all six regions, the 2006–35 warm extreme

temperature index shows higher fractions of each region

than the 1981–2010 warm index. Finally, in all regions,

the modeled trend for 2006–35 is substantially larger than

for 1981–2010, that is, the models simulate an accelerat-

ing upward trend in this extreme metric.

Time series of the number of negative (cold) extreme

temperature events (Fig. 3) show good agreement be-

tween model means from 1981 to 2010 and observed

trends for all the regions. The 1981–2010 model means

exhibit peaks in the early 1990s, presumably reflecting

the effects of the Mount Pinatubo eruption, which is

incorporated into the forcing data that drive the climate

models (Halpert et al. 1994). The observations show

smaller peaks, except for theMWand theGP, where the

observations and the 1981–2010model mean are in close

agreement. This difference between the model mean

and observations could be the result of several factors,

including oversensitivity of some of the models to

aerosol forcing, uncertainties in the forcing data, or

natural variability muting the observed response to the

volcanic eruption. Given the large number of models

and associated multiple ensemble members, further

analysis is beyond the scope of this paper. The 2006–35

data show very low values, indicating that the overall

warming has decreased the instances of STA values less

than 21.5 to near zero.

In summary, the model observations are in agreement

with the general observed increase in the number of

warm events and decrease in the number of cold events

for 1981–2010. The observed results are consistent with

prior studies (e.g., DeGaetano and Allen 2002) and

consistent with the overall global warming due to in-

creasing concentrations of greenhouse gases. For 2006–

35, model projections indicate an acceleration of the

upward trend in warm extremes and the virtual disap-

pearance by 2035 of cold extremes. Seasonal behavior is

explored in the following section.

b. Seasonal extremes index

Figure 4 presents the trends of the warm extreme

temperature index for the four seasons (DJF, winter;

MAM, spring; JJA, summer; and SON, fall) as a scat-

terplot of observed trend and model ensemble mean

trend (both trends are in percent per decade) for the six

regions. The model mean trends are positive (upward)

for all six regions and for all four seasons. The observed

regional trends are mostly positive, the exceptions being

the GP inMAM, theMW in JJA, the SE inDJF, and the

NW for all four seasons. Although most of the regions

have the same sign between observed and model trends,

most of the regional model trends (except the NW) are

larger than that of the observations.

Figure 5 is similar to Fig. 4 but for the cold extreme

temperature index. The model mean trends are down-

ward for all six regions and the four seasons. The ob-

served trends are also all downward except for the SE in

winter and the NW in spring. The observed magnitude

of the observed trends tends to be mainly less than the

modeled trends.

Figures 4 and 5 show model ensemble mean trends.

Further analysis examines the trends of all the ensemble

members individually and compares the distribution of
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FIG. 3. As in Fig. 2, but for the negative (cold) temperature extremes index.
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those trends with the observations. Since themodelmean

trend in some of the regions, especially the NW, does not

agree well with the observed trends, it is useful to explore

if any of the ensemble members agree well with the ob-

served trends when the overall model mean does not.

Good agreement between the model mean trend and

the observed trend was found for the NE (Figs. 2 and 3).

Figure 6 shows the cumulative distribution functions

(CDFs) of the trends for the 77 ensemble member set

for the NE region for each season for both warm and

cold temperature extremes. In each season, the distri-

bution is quite large and spans zero, that is, the ensemble

set includes trends of both signs. This shows that natural

internal variability is sufficiently large to potentially

account for differences in trend sign between models

and observations. When considering just the sign of the

trend, for winter,;65%of the ensemblemembers agree

for the warm index and ;82% for the cold index with

observations. Since the CanCM4 alone has 18 members

of the total 77 and thus heavily weighs the results, we

investigated whether the results are different for the rest

of the models. The red dashed lines in Fig. 6 are the

CDFs without the CanCM4 included. It is clear that the

resulting CDFs are not much different than the CDFs

with all the members included. Results for spring show

;75% for the warm index and;87% for the cold index

in agreement on the trend sign. Summer results show

;80% for the warm index and;96% for the cold index

with agreement to the observed trend. For fall, the warm

index has ;71% and the cold index has ;94% agree-

ment to the observed trend. In all seasons, large per-

centages of the simulations agree in sign with the

observed trends.

The comparison between the observed trend and the

ensemble CDF was quantified as the ensemble CDF

percentile value of the observed trend. For example, in

Fig. 6, the observed trend for the winter warm index

intersects the CDF at approximately the 45th percentile;

it is this value that is plotted in Figs. 7 and 8. Good

agreement is characterized as percentile values in the

middle of the distribution, for example, in the range of

25–75 (interquartile range). Poor agreement is charac-

terized as trend values outside of the range of the en-

semble set or on the extreme tails of the distribution

(,5th or .95th percentile).

The results for the warm index (all seasons and re-

gions) are shown in Fig. 7. All observed values are

within the 5th–95th percentile range, indicating that

the ensemble set includes the actual observed outcome

in all seasons and regions. However, there is variability

in the closeness of agreement, as several observed

FIG. 4. Scatterplot of observed vs model mean trend (1981–

2010) of the positive (warm) temperature extremes index for

each of the four seasons and each of the six regions. Trend

magnitudes are percent per decade. The 1-to-1 line is included in

the plot to indicate agreement of the observations and model

mean trend.

FIG. 5. As in Fig. 4, but for the negative (cold) temperature

extremes index.
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FIG. 6. CDFs (1981–2010 hindcast data) for the Northeast region of all 77 ensemble members of the 13 CMIP5

models’ seasonal extreme temperature index regression trend coefficients. The blue line is the observed temper-

ature extremes index trend, and the gray line is the zero reference. The black line is the CDF for the entire

77-member ensemble. The red dashed line is the CDF when the CanCM4 18 ensemble members are removed. The

unit of the regression coefficients (RC) is percent per decade.
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values are outside of the interquartile range. The

winter season shows the best agreement between the

observed trend and the CMIP5 ensemble member

CDFs as all regions except for the SEwithin the 40th to

60th percentile range. The SE percentile value is

around 20. For spring, trends in three regions are

outside of the interquartile range: NE (86th percen-

tile), NW (12th percentile), and GP (16th percentile).

For summer, two regions are outside the interquartile

range: NW (13th percentile) and MW (9th percentile).

For fall, the spread in percentile values is the greatest

among the regions, and three regions are outside the

interquartile range: NW (22nd percentile), NE (80th

percentile), and MW (87th percentile).

The cold index results (Fig. 8) show poor agreement

for two regions in the winter. The percentile values of

the observed trend for the NW and the GP are both

below the fifth percentile, indicating that the observed

trends, which are downward, are larger in magnitude

than almost all of the model trends. The MW region

winter value (23rd percentile) is also outside of the

interquartile range. For spring and fall, observed trends

for four of the regions are within the interquartile range.

In both seasons, the NW and GP observed trends are in

the 75th–95th percentile range. For summer, observed

trends for four of the regions are in the 75th–95th per-

centile range. Only the NW and SW are within the

interquartile range.

Overall, the results of Figs. 7 and 8 suggest that the

observed trends are generally consistent with the trends

in the model ensemble set. For the warm (cold) index, 15

(12) of the seasons and regions (out of a total of 24 for

each index) have observed trends within the interquartile

range. Only 2 of the 48 (for both extremes) are outside of

the 5th–95th percentile range. These values are fully

consistent with a random sampling of the ensemble set.

There is variation among the models in the level of

agreement with observations. An individual model as-

sessment of agreement with the signs of the observed

trends is summarized in Fig. 9 (warm index) and Fig. 10

(cold index), which display the percentage of ensemble

members in agreement with the sign of the observed

trend. For the NE region, most models have a majority

of their members in sign agreement with observations.

The major exception is CNRM-CM5 for warm ex-

tremes, for which most ensemble members are in sign

disagreement in most seasons. For the other regions, the

individual ensemble members are mostly in agreement

with the sign of the observed trend for most models.

Exceptions are those regions and seasons for which the

sign of the observed trend is opposite the expectation

for a warming world. These include downward trends in

warm extremes for winter in the SE, spring in the GP,

summer in the MW, and spring, summer, and fall in the

NW, and upward trends in cold extremes for spring in

the NW. In these cases, the sign of the simulated trend

for most ensemble members is opposite the observed,

FIG. 7. Percentiles of the observed trends relative to the

77-member CDFs (1981–2010 hindcast data) of the trend in the warm

temperature extremes index for all six regions and each season.

FIG. 8. As in Fig. 7, but for the cold temperature extremes index.
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FIG. 9. Percent of ensemble members with the same sign of the trend as the observed trend

for the warm temperature extremes index from each model. The numbers in parentheses are

the number of ensemble members for each model. Only models with at least six members

are shown.
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FIG. 10. As in Fig. 9, but for the cold temperature extremes index.
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although in all cases there are individual ensemble

members that simulate both the sign and magnitude of

the observed trend.

The CNRM-CM5 shows somewhat greater dis-

agreement with observed trends than the other five

models. The disagreement with the sign of the trends

occurs primarily for the NE and SE regions. An ex-

amination of the trend of each ensemble member in-

dicates that the model range includes the observed

trend in all cases except JJA. In JJA, the model-

simulated trends are in all cases less than the observed

trend. An examination of mean summer temperature

indicates no trend for the CNRM-CM5 multiensemble

mean while observed temperatures are upward for 1980–

2010 (Kunkel et al. 2013a,b). This model behavior is

likely due to natural variability since the external forcing

in all of the CMIP5 historical model simulations results in

increases of the radiative forcing during this period

(Myhre et al. 2013).

A metric of future changes in the extremes index was

quantified as the block average difference in the index

between the later and earlier periods, specifically the

2006–35 average minus the 1981–2010 average. The

variations among ensemble members in future changes

in extremes are displayed in Fig. 11 (warm index) and

Fig. 12 (cold index). For the warm temperature ex-

treme index (Fig. 11), the great majority of ensemble

members show increased occurrences in all regions.

The multimodel mean difference indicates an approx-

imate doubling of occurrences in all regions. However,

there are a few members that indicate slight decreases,

illustrating that natural variability can cause future

changes in the opposite direction of overall global

warming. For the cold temperature extremes index

(Fig. 12), all ensemble members indicate decreases in

occurrences in the future period. Themultimodel mean

differences indicate decreases of about 60% or more

in all regions.

4. Discussion and conclusions

Mean annual temperature has warmed since 1980 in all

regions of the United States (Walsh et al. 2014). In gen-

eral, monthly temperature extremes have changed in the

same way, with hot extremes increasing and cold ex-

tremes decreasing, with some key exceptions discussed

later. Greenhouse gas (GHG) forcing has increased

continuously since 1980, and global temperatures have

risen substantially. An expectation is that global climate

models forced by this increase in GHGs will simulate

increases in warm extremes and decreases in cold ex-

tremes. This is generally the case, as the models mostly

simulate the correct sign of the observed trend.

Most models have an ensemble of simulations. These

provide some quantification of the effects of natural

variability. The majority of simulations agree in sign

with observed trends, indicating that there is skill in use

of such simulations as projections of the future. How-

ever, in all seasons and regions, there are some mem-

bers, in the range of 10%–40% of all members, with

opposite signs. For use as 30-yr projections, this in-

dicates that even under strongly increasing forcing, any

projections, though skillful, will be associated with

substantial uncertainty.

The primary source of skill is presumably the long-

term trend in external forcing from greenhouse gas

concentration increases. Meehl et al. (2014) indicate

that the contribution to skill from initialization is rela-

tively small in years 2–9 over the United States, and the

contribution would be even smaller after year 9.

The well-studied ‘‘warming hole’’ (Pan et al. 2004;

Rogers 2013) in the central and southeastern United

States is also accompanied by a lack of upward trends in

warm extremes in winter in the Southeast, spring in the

Great Plains, and summer in the Midwest. In general,

FIG. 11. Difference in the period average of the annual warm

temperature extremes index (2006–35 minus 1981–2010) for each

ensemble member, expressed as a percentage of the 1981–2010

average. The open circle is the ensemble average.
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climate models fail to simulate the lack of mean warm-

ing in these regions (e.g., Kunkel et al. 2006), and in this

study, the trends in most ensemble members are of the

opposite sign to the observed trends. However, there are

some ensemble members that simulate a lack of upward

trend in warm extremes in these seasons and regions.

This is similar to Meehl et al. (2012), who found en-

semble members from the CCSM that simulated the

annual mean temperature ‘‘warming hole.’’ In fact, all of

the observed trends are within the ranges of the en-

semble set of trends.

We conclude that there is potential skill in use of

GCMs to provide projections of hot and cold extremes

on the 30-yr time scale. External forcing appears to be

the dominant source of skill on this time scale. Anal-

ysis of the future simulations (2006–35) indicates that

warm extremes increase rapidly, while cold extremes

become substantially rarer. Given the difficulty of

shifting to an energy economy not dominated by fossil

fuel consumption, the likelihood that external forcing

will continue to increase appears high, thus providing a

rather strong basis for GCMs’ use as skillful pro-

jections. However, it is important to note that natural

variability is comparable to the forced signal on this

time scale and thus introduces uncertainty.
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